Respuesta :

Answer:

x = [tex]\frac{1}{4}[/tex]

Step-by-step explanation:

Using the rules of logarithms

• log[tex]x^{n}[/tex] ⇔ n logx

• logx - logy = log([tex]\frac{x}{y}[/tex])

• logx = logy ⇔ x = y

Given

2log2 - 3log2 = log2x

log2² - log2³ = log2x

log4 - log8 = log2x

log[tex]\frac{4}{8}[/tex] = log2x, hence

2x = [tex]\frac{1}{2}[/tex]

x = [tex]\frac{1}{4}[/tex]